www.der-wirtschaftsingenieur.de

- Generalist zwischen Wirtschaft und Technik



Kunststoffe

Veröffentlicht in Werkstofftechnik von Redakteur am 30. Aug. 2011

Kunststoffe sind synthetisch hergestellte (künstliche) Werkstoffe. Kunststoffe basieren auf miteinander reagierte Kohlenstoff- oder Silizium-Verbindungen (organisch) mit mehr als 1000 Atomen pro Molekül (makromolekular).

Die Herstellung von Kunststoffen erfolgt aus den natürlich vorkommenden Rohstoffen Erdöl (Naphtha), Kohle, Erdgas, Kalk, Luft und Wasser. Hinzu kommen häufig Additive (z. B. Stickstoff, Chrom, Schwefel oder Chlor).

Kunststoffe sind in der Regel gut formbar und können leicht weiterverarbeitet werden. Gegen Laugen und Säuren sind Kunststoffe recht unempfindlich.

Unterschiede zu Metall-Werkstoffen:

  • Geringere mechanische Festigkeit
  • Einfärbbar
  • Niedrigere Schmelztemperatur, folglich niedrigere Gebrauchstemperatur
  • Geringere Dichte, zwischen 0,9 und 2,5 kg/dm³
  • Temperaturabschirmung
  • Kunststoffe sind meistens elektrische Isolatoren
  • Korrosionsbeständig

Kunststoffe gelten als die Werkstoffe der Zukunft. Bereits heute ist die Kunststoffproduktion volumenmäßig längst bedeutender als die Rohstahlproduktion. Kunststoffe werden heute und in Zukunft weiteres Potenzial bieten, welches insbesondere durch Nanotechnologie erschlossen werden wird.
[ad#Google Adsense]

(mehr…)


Wärmebehandlung von Stahl

Veröffentlicht in Fertigungstechnik, Werkstofftechnik von Redakteur am 14. Aug. 2011

Stähle müssen verschiedenste fertigungs- und anwendungsgerechte Eigenschaften erfüllen. Mit einer Wärmebehandlung von Stählen wird angestrebt, die Werkstoffeigenschaften so zu ändern, dass diese belastbarer oder anderweitig anwendungsgerechter sind und/oder um die Bearbeitung des Werkstoffes (Umformen oder Zerspanen) zu ermöglichen bzw. zu erleichtern. Nach der DIN 8580 gehört die Wärmebehandlung zu den Fertigungsverfahren der Stoffeigenschaftsänderung.

Die Wärmebehandlung erfolgt immer im festen Zustand. Wärmebehandlung von Stählen definiert sich nach Temperatur und Zeit. Wichtige Parameter der Wärmebehandlung:

  • Glühtemperatur
  • Glühdauer
  • Abkühlung (Art und Geschwindigkeit)
  • Prozessfolge von Wärmebehandlungsschritten

Für die Wärmebehandlung ist die A1-Linie (P-S-K-Linie bei 723°C) im Eisen-Kohlenstoff-Diagramm eine  wichtige Markierung, denn bei mehr als 0,02% Kohlenstoffanteil (Stahl) und unter der A1-Linie zerfällt Austenit zu Perlit. Wenn keine Kornänderung erzielt werden soll, ist die Erwärmung unterhalb der A1-Linie zu halten.

Die A2-Linie ist für die Wärmebehandlung weniger von Bedeutung. Wird die A2-Linie (und damit eine Erwärmung von 768°C) überschritten, verliert sich der Ferromagnetismus.

Wichtig ist hingegen die A3-Linie (G-O-S-Linie), bei deren Unterschreitung (Abkühlung) sich freiwerdender Kohlenstoff im Austenit anreichert bis die A1-Linie erreicht wird.

(mehr…)


Thermoplaste – Werkstoff und Verarbeitung

Veröffentlicht in Fertigungstechnik, Werkstofftechnik von Redakteur am 24. Jul. 2011

Thermoplaste sind die erfolgreichsten Kunststoffe und eine der erfolgreichsten Werkstoffarten der Neuzeit. Aus Sicht der Werkstofftechnik gibt es zwei Formen von Thermoplaste:

  • Amorphe Thermoplaste
  • Teilkristalline Thermoplaste

Amorphe Thermoplaste haben eine Struktur, welche sich durch ineinander verflochtene lange Fadenmoleküle auszeichnet. Bei Raumtemperatur sind Thermoplaste hart. Die Vernetzung besteht nicht in einer dichten Struktur sondern durch ungeordnete Überlappung. Thermoplaste sind tendenziell – jedoch nicht zwingend – wärmeempfindlich. Bei Erhitzung geraten die Fäden in Schwingung und lockern sich, weiß zu einer Erweichung führt.

Teilkristalline Thermoplaste bestehen hingegen aus teilweise parallel anliegenden, verwobenen Fadenmolekülen in einer dichten Anordnung. Teilkristalline thermoplastische Bauteile sind bei höheren Temperaturen daher besser konstruktiv nutzbar.

(mehr…)


Hochfester Stahl als Konstruktionswerkstoff

Veröffentlicht in Werkstofftechnik von Redakteur am 15. Jul. 2011

Stahl ist ein verbreiteter Konstruktionswerkstoff überhaupt. Stahl ist bedeutender Strukturwerkstoff (Skelettbau) im Hochbau, Automobilbau und vielen weiteren Bereichen. Stahl ist kein einfacher Werkstoff, sondern eine Werkstoffgruppe mit mehr als 2500 Stahlsorten, bestehend aus verschiedenen metallischen Legierungen mit Eisen als Hauptbestandteil und einem kleinen Anteil von Kohlenstoff. Stahl ist ein Eisenmetall-Werkstoff mit einem Höchstgehalt von 2,06% Kohlenstoff (C). Im Eisen-Kohlenstoff-Diagramm lässt sich Stahl demnach wie folgt skizzieren:

Nach der DIN EN 10020 ist Stahl ein Werkstoff, dessen Massenanteil an Eisen größer ist als der jedes anderen Elements, dessen Kohlenstoffgehalt im Allgemeinen kleiner als 2% ist und der andere Elemente enthält. (mehr…)


Bruchtest und Bruchformen von Klebverbindungen

Veröffentlicht in Fertigungstechnik, Werkstofftechnik von Redakteur am 13. Jun. 2011

Fügen durch Kleben ist ein verbreitetes und zukunftsträchtiges Verfahren in Fertigung und Montage. Neben den vielen Vorteilen des Klebens gibt es auch eine Reihe von Nachteilen, zu denen auch die schwierigen Qualitätstests für Klebverbindungen zählen. Eine fertige Klebverbindung lässt sich nur durch Zerstörung in Form von experimentellen Bruchtests feststellen.

Bruchtests

Fügeverbindungen durch Klebstoff sind eher unempfindlich gegenüber Druck- und Zugbelastungen, problematisch sind hingegen Scherbelastungen. Entsprechend sinnvoll ist die experimentelle Erprobung von Klebverbindungen mit Scherkrafteinwirkung. Die DIN 53 283 definiert einen Zugscherversuch, welcher die Haftung von Klebverbindung zwischen zwei länglichen Fügeteilen erprobt. Der Versuch arbeitet mit Kräften und Momenten.

Der Zugscherversuch nach DIN 53 283 hat jedoch den Nachteil, das die Fügeteile durch Biegung vo dem Versuch durch Knicken angewinkelt werden müssen. Der Versuch scheitert hier möglicherweise bereits durch das materielle Nachgeben der Fügeteile.

(mehr…)


Randschichthärten – Oberflächenhärtung von Stählen

Veröffentlicht in Fertigungstechnik, Werkstofftechnik von Redakteur am 9. Okt. 2009

Randschichthärten (auch: Oberflächenhärten) behandelt Fertigungsverfahren der Wärmebehandlung (Stoffeigenschaftsänderung) zur Härtung der Randschicht (Oberfläche) von Werkstücken, welche in der Regel aus Vergütungsstählen bestehen. Ziel ist die Schaffung einer harten, verschleißfesten Oberfläche bei weichem, zähem Kern. Härten erfolgt nach dem Prinzip der Erhitzung und Abschreckung des Materials, wodurch die Bildung von Martensit angestrebt wird, der die Härte schafft.

Randschichthärten kann in Randschichthärtung mit und ohne Kohlenstoff/Stickstoff-Zuführung unterschieden werden.

  • Randschichthärtung durch Gefügeumwandlung mit ausreichend vorhandenem Kohlenstoff
  • Flammenhärten
  • Induktionshärten
  • Randschichthärten durch Gefügeumwandlung mit zugeführtem Kohlenstoff
    • Einsatzhärten
  • Randschichthärten mit zugeführtem Stickstoff
    • Nitrieren

    Typische Vergüten und Einsatzhärten sind zwei von mehreren Wärmebehandlungsverfahren zur Steigerung der Festigkeit in Kombination mit der Zähigkeit. Beide Verfahren sind selbst Kombinationen aus mehreren einzelnen Wärmebehandlungsverfahren. (mehr…)


    Wirkung von Legierungselementen (Metalllegierung)

    Veröffentlicht in Werkstofftechnik von Redakteur am 23. Sep. 2009

    Das wohl wichtigste Element ist Kohlenstoff (C), welches zusammen mit Eisen (Fe) legiert Stahl ergibt und somit zu einem der wichtigsten metallischen Werkstoffe wird. Kohlenstoff ist ein Nichtmetall.
    Mit zunehmendem Kohlenstoff-Gehalt steigen die Festigkeit und Härtbarkeit des Stahles, wogegen seine Dehnbarkeit, Schmiedbarkeit, Schweißbarkeit und Bearbeitbarkeit (durch spanabhebende Werkzeuge) verringert werden. Der Korrosionswiderstand gegenüber Wasser, Säuren und heißen Gasen wird durch den Kohlenstoff praktisch nicht beeinflusst.

    Nachfolgend werden eine kleine Auswahl an wichtigen metallischen Legierungselemente, der vielen bekannten Legierungselemente, etwas vorgestellt. (mehr…)


    Elastizitäts-Modul (E-Modul)

    Veröffentlicht in Technische Mechanik, Werkstofftechnik von Redakteur am 3. Apr. 2008

    In der Umwelt sind Körper nie absolut starr, anders als man es bei der Berechnung z.B. in der Statik gerne hätte. Die Körper aus bestimmten Materialien sind unterschiedlich beschaffen und reagieren auf Beanspruchung unterschiedlich.

    Für Ingenieure ist es jedoch von äußerster Wichtigkeit, das Verhalten eines Materials bei Beanspruchung einschätzen zu können.

    Bei Zug reagieren Körper mehr oder weniger (da materialabhängig) mit Dehnung. Welcher Grad der Dehnung und wann welche Dehnstufe (elastische Dehnung, plastische Dehnung, Bruch) erreich wird, wird mit einem Zugversuch im Labor getestet.
    Beim Zugversuch werden Objekte eingespannt und an ihnen nach einem standarisiertem Verfahren gezogen.

    Der Zugversuch setzt die Dehnung δ und die Spannung ε ins Verhältnis, es resultiert ein Wert (E-Modul) der Auskunft über die Elastizität bei Spannungsanstieg gibt. Der E-Modul wird i.d.R. mit der Einheit kN/mm2 angegeben.

    (mehr…)


    Bücherempfehlung – Werkstofftechnik

    Veröffentlicht in Bücher, Werkstofftechnik von Redakteur am 13. Feb. 2008

    Werkstoffe und ihre Eigenschaften sind Thema in ingenieurswissenschaftlichen Studiengängen. Die Einarbeitung in das komplexe Verhalten der Werkstoffe fällt vielen Studenten schwer, einige Bücher wollen hier schnellstmöglich Abhilfe verschaffen.

     


     

    [ad#Google Adsense]


    Eisen-Kohlenstoff-Diagramm

    Veröffentlicht in Werkstofftechnik von Redakteur am 12. Feb. 2008

    Verarbeitetes Eisen (Fe) enthält eine gewisse Menge an Kohlenstoff (C). Kohlenstoff ist das wichtigste Legierungselement im Eisen (da es ausschlaggebend für die Härte des Materials ist). Welche Anteile an Kohlenstoff im Eisen vorhanden sind und deren Auswirkungen auf die gefügemäßige Zusammensetzung, zeigt das Eisen-Kohlenstoff-Diagramm (EKD). Das EKD ist ein Phasendiagramm, eine Art Gleichgewichtsschaubild (aus zwei Stoffen A und B, in diesem Fall Eisen und Kohlenstoff).

    Aufbau des Phasendiagramms: Vertikale Achse zeigt die Temperatur, die horizontale Achse den Legierungsanteil (Kohlenstoffanteil). Das Diagramm zeigt bei korrekter (d.h. nicht zu schneller) Temperaturveränderung von warm zu kalt die Gefügebestandteile.

    Zu benutzen ist das Phasendiagramm wie folgt: Legierungsanteil an Kohlenstoff (horizontal) festmachen, das Diagramm von höchster Temperatur (vertikal) herunter laufen lassen. Begonnen wird folglich immer bei der Schmelze (flüssiges Material), nach Abkühlung findet sich zumindest bei dem Eisen-Kohlenstoff-Phasendiagramm immer festes bzw. erstarrtes Material.

    Begriffsserklärung:

    Das Eutektikum findet sich am Einschnürungspunkt. Die Legierungselemente stehen in genau dem Verhältnis, bei dem der Übergang bei beiden Legierungelementen von der Schmelze bei Abkühlung sofort in den festen Aggregatzustand wechselt.

    Die Liquiduslinie trennt die vollkommende Schmelze von der Halbschmelze (ein Legierungelement ist flüssig, ein anderes nicht) und dem festen Material. Im Schaubild verläuft die Liquiduslinie wie folgt: A-B-C-D

    Die Soliduslinie trenn die Schmelze und Halbschmelze von dem festen/erstarrten Material. Im Schaubild: A-H-I-E-C-D


    (mehr…)


    Nächste Seite »