Wirkung von Legierungselementen (Metalllegierung)

Das wohl wichtigste Element ist Kohlenstoff (C), welches zusammen mit Eisen (Fe) legiert Stahl ergibt und somit zu einem der wichtigsten metallischen Werkstoffe wird. Kohlenstoff ist ein Nichtmetall.
Mit zunehmendem Kohlenstoff-Gehalt steigen die Festigkeit und Härtbarkeit des Stahles, wogegen seine Dehnbarkeit, Schmiedbarkeit, Schweißbarkeit und Bearbeitbarkeit (durch spanabhebende Werkzeuge) verringert werden. Der Korrosionswiderstand gegenüber Wasser, Säuren und heißen Gasen wird durch den Kohlenstoff praktisch nicht beeinflusst.

Nachfolgend werden eine kleine Auswahl an wichtigen metallischen Legierungselemente, der vielen bekannten Legierungselemente, etwas vorgestellt.

Chrom

Chrom dient als Legierungselement der Herabsetzung, der für die Martensitbildung nötigen kritischen Abkühlgeschwindigkeit und erhöht damit die Härtbarkeit, Warmfestigkeit und begünstigt die Vergütbarkeit. Chrom erweitert den Ferritbereich. Die Nitrierbarkeit (Zufuhr von Stickstoff zur Oberflächenhärtung) wird verbessert. Die Kerbschlagzähigkeit wird durch Chrom etwas verringert, ebenso die Schweißbarkeit nimmt bei reinen Chromstählen mit zunehmendem Gehalt an Chrom ab. Die Zugfestigkeit des Stahls steigt um ~80-100 N/mm² je 1% Chrom an. Die Warmumformbarkeit verringert sich mit Chromlegierungsanteilen entsprechend. Wärmeleitfähigkeit und elektrische Leitfähigkeit werden verringert. Chrom ist ein karbidbildendes Metall. Seine Karbide (Carbide, binäre chemische Verbindungen mit Kohlenstoff) steigern die Verschleißfestigkeit. Steigende Chrom-Anteile setzten die Zunderbeständigkeit herauf. Korrosionsbeständige Stahllegierungen verlangen einen Mindestchromgehalt von ~13%, welcher in der Grundmasse gelöst werden muss.

Kupfer

Die Härtbarkeit und erreichbare Streckgrenze werden durch Kupferanteile erhöht, das Streckgrenzen-Festigkeitsverhältniss verbessert. Gehalte über 0,30% können Aushärtungen bewirken. Kupfer beeinflusst die Schweißbarkeit nicht, es begünstigt i.d.R. eher die Bearbeitung der Metalllegierung.
In unlegierten und schwachlegierten Stählen wird durch Kupfer eine nicht unwesentliche Verbesserung der Korrosions- und damit auch der Witterungsbeständigkeit erreicht. In hochlegierten Stählen wird Kupfer auch mit über 1% Anteil legiert und verbessert damit auch die Beständigkeit gegenüber Säuren. Kupfer fließt zwar in vielfältige Metalllegierungen ein, für Stahllegierungen wird es hingegen teilweise als Schädling betrachtet, da es sich unter der Zunderschicht anreichert und der Kupfereinfluss durch Eindringen in die Korngrenze eine große Oberflächenempfindlichkeit bei Warmverformungsprozessen zur Folge hat. Kupfer fließt daher eher weniger in Stähle ein.

Mangan

Mangan besitzt eine hohe Affinität (Tendenz zur Eingehung zu chemischen Verbindungen) zu Sauerstoff und Schwefel, setzt die kritische Abkühlungsgeschwindigkeit stark herab und erhöht so die Härtbarkeit. Streckgrenze und Festigkeit werden für Metalllegierungen mit Mangan erhöht. Mangan wirkt sich günstig auf die Schmied- und Schweissbarkeit aus. Mangan-Gehalte von über 4% führen (auch bei langsamer Abkühlung) zur Ausbildung von spröden martensitischem Gefüge. Stähle mit Mangan-Gehalten über 12% sind bei gleichzeitig hohem Kohlenstoff-Anteil austenitisch. Diese Stähle verfügen unter schlagender Beanspruchung der Oberfläche über eine sehr hohe Kaltverfestigung, während der Kernbereich zäh bleiben kann. Mangan kann mit entsprechend hohem Legierungsanteil eine hohe Verschleißfestigkeit bei Schlageinwirkung erzielen.
Stähle mit Mangan-Gehalten von mindestens 18% bleiben auch nach relativ starker Kaltverformung nicht magnetisierbar, sie werden als Sonderstähle und auch als kaltzähe Stähle bei Tieftemperatur-Beanspruchung verwendet. Mangan verbessert den Wärmeausdehnungs-Koeffizienten, während Wärmeleitfähigkeit und elektrische Leitfähigkeit abnehmen. Manganlegierungen bewirken den Anstieg der Zugfestigkeit, Streckgrenze, Warmumformbarkeit sowie Härtbarkeit (Vergütbarkeit) und Nitrierbarkeit.

Molybdän

Molybdän ist ein Legierungselement, welches selten alleine ohne weitere typische Legierungselemente legiert wird. Molybdän setzt die kritische Abkühlungsgeschwindigkeit herab, wodurch bei richtiger Abkühlvorgehen die Härtbarkeit gesteigert wird. Molybdän verringert weitgehend die Anlasssprödigkeit, also das Nachlassen der Kerbschlagzähigkeit nach Anlassen der Legierung, und gewährleistet einer verbesserte Feinkornbildung sowie die Schweißbarkeit. Molybdän erhöht außerdem die Hitzebeständigkeit (nicht jedoch die Zunderbildung), Festigkeit und Streckgrenze. Vorteil des Molybdäns als Metalllegierungselement ist auch die Verringerung der Korrosionsanfälligkeit, es verringert so die Gefahr von Lochfraß im korrosionsfördernden Umfeld. Hochlegierte Chrom-Stähle und austenitische Chrom-Nickel-Stähle sind typische Legierungseinsätze.

Nickel

Nickel erhöht die Streckgrenze und Kerbschlagzähigkeit in Baustählen. Nickel wird bei Einsatzstählen und Vergütungsstählen ebenso zur Steigerung der Zähigkeit verwendet. Zudem verbessern Nickellegierungen die Korrisionsbeständigkeit. Nickel bewirkt in korrosions- und zunderbeständigen Chrom-Nickel-Stählen die Austenitstruktur.
Hohe Nickelgehalte führen aber auch zur Verringerung der Verschleißfestigkeit, Zerspanbarkeit und Schweißbarkeit. Nickel gilt zudem als gesundheitsbedenklich, da Nickel einer der Auslöser für Kontaktallergien sein kann.

Zinn

Zinn ist ein Stahlschädling. Zinn kann zusammen mit Kupfer aber zum Legierungsmetall Bronze gebracht werden und ist kaum ersetzbar für Metalllegierungen mit einem niedrigen Schmelzpunkt (z. B. Lötzinn). Zinn hat den Nachteil, durch allotrope Umwandlung über die Zeit sich selbst und ganze Metalllegierungen zu zerstören bzw. unbrauchbar zu machen.

Legierungselement Eigenschaften des reinen Werkstoffs Werkstoffeinfluss
Mangan (Mn) Als reines Metall kaum verwendbar, grau-weißes, sprödes und hartes Schwermetall Verhärtet den Werkstoff und macht ihn spröde
Chrom (Cr) Beschichtungswerkstoff, silberweißes, zähes, korrosionsbeständiges und hartes Metall Erhöht die Zähigkeit, Korrosionsbeständigkeit und Härte des Werkstoffs
Molybdän (Mo) Legierungsmetall, silberweiß glänzendes, zähes und hartes Metall Verhärtet den Werkstoff und macht ihn zäh
Nickel (Ni) Ferromagnetisches Metall, silberglänzend, hart, korrosionsbeständig, schmiedbar und duktil Verhärtet den Werkstoff, aber macht ihn auch duktil, außerdem Erhöhung der Korrosionsbeständigkeit

2 Gedanken zu „Wirkung von Legierungselementen (Metalllegierung)“

Kommentare sind geschlossen.